The diagnostic and prognostic significance of soluble urokinase plasminogen activator receptor in Crimean-Congo hemorrhagic fever

Gurdal Yilmaz, Ahmet Mentese, Selcuk Kaya, Aysegul Uzun, S. Caner Karahan, Iftihar Koksal

Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Karadeniz Technical University, KTU Tip Fakültesi, Enfeksiyon Hastalıkları, Trabzon, Turkey

Department of Biochemistry, Karadeniz Technical University, School of Medicine, Trabzon, Turkey

Article info

Article history:
Received 12 June 2010
Received in revised form
19 November 2010
Accepted 19 November 2010

Keywords:
Crimean-Congo hemorrhagic fever
CCHF
suPAR
Prognostic significance

Abstract

Background: Crimean-Congo hemorrhagic fever (CCHF) is a potentially fatal disease caused by a tick-borne virus belonging to the Bunyaviridae family. It has recently been reported that soluble urokinase-type plasminogen activator receptor (suPAR), secreted from endothelial cells and the mononuclear phagocyte system, one of the main targets of the CCHF virus, is a potential biomarker for several bacterial and viral infection diseases.

Objectives: This study was intended to determine the diagnostic and prognostic significance of suPAR levels in CCHF.

Study design: This retrospective study was conducted between June 2006 and August 2009 using plasma from patients monitored with a diagnosis of CCHF and from healthy blood donors. Levels of plasma suPAR were determined using an enzyme-linked immunosorbent assay (ELISA) kit according to the manufacturer's instructions.

Results: One hundred CCHF patients were enrolled in the study. The control group was made up of 53 healthy blood donors. suPAR values of 6.2 ± 4.2 were determined in the CCHF patients and of 2.3 ± 0.6 in the control group (p < 0.0001). A suPAR level optimum diagnostic cut-off point of 3.06 ng/mL was determined, with an area underneath the ROC (AUROC) curve of 0.94 (95% CI: 0.89–0.97), sensitivity of 87% (95% CI: 79–93%), specificity of 92% (95% CI: 82–98%), PPV of 95% and NPV of 79%. Five of the patients died. suPAR was 18.4 ± 9.1 in the patients that died and 5.6 ± 2.6 in the survivors (p = 0.034). In terms of mortality, suPAR level had an optimum diagnostic cut-off point of 10.6 ng/mL, AUROC of 0.97 (95% CI: 0.94–0.99), sensitivity of 100% (95% CI: 48–100%), specificity of 96% (95% CI: 90–99%), PPV of 50% and NPV of 100%.

Conclusions: Plasma suPAR level, a new biomarker, is a test that can be used in the differential diagnosis and monitoring of CCHF in patients admitted to hospital with suspected infection. The test is at the same time important in being a possible predictor of mortality.

Crown Copyright © 2010 Published by Elsevier B.V. All rights reserved.

1. Background

Crimean-Congo hemorrhagic fever (CCHF), which is caused by a tick-borne virus belonging to the Bunyaviridae family, may present with a mild clinical course or else exhibit a severe profile with potentially fatal hemorrhaging.1,2 Patients mostly present with complaints such as fever, fatigue, generalized pain, myalgia, nausea or vomiting, while severe cases exhibit epistaxis, hematemesis, melena, hematuria, gingival bleeding, vaginal bleeding, petechiae or ecchymosis.1–3 The main target of the CCHF virus is the mononuclear phagocyte system and endothelial cells.1 Soluble urokinase-type plasminogen activator receptor (suPAR), secreted from these cells (neutrophils, lymphocytes, macrophages, endothelial cells) has recently been reported to be a potential biomarker for several bacterial and viral infection diseases.4,5

2. Objectives

This study was intended to determine the diagnostic and prognostic significance of suPAR levels in CCHF.

3. Study design

This retrospective study was conducted on patients with CCHF hospitalized between June 2006 and August 2009 at the Department of Infectious Diseases and Clinical Microbiology of the
Karadeniz Technical University Medical Faculty in Turkey. The study was approved by Local Ethical Committee. Patients whose CCHF diagnoses were confirmed through detection of IgM using ELISA and/or the genomic segment of the virus using RT-PCR in the Virology Laboratory of the Refik Saydam National Hygiene Center of the Turkish Ministry of Health were enrolled. The presence of CCHF-specific serum IgM antibodies was determined by in-house ELISA method. The antigens used in ELISA tests were obtained from the Centers for Disease Control and Prevention (CDC, Atlanta, GA, USA). Demographic characteristics, occupation, tick exposure history, incubation time, symptoms, duration between onset of symptoms and admission, clinical findings, and laboratory tests (white blood cell count [WBC], platelet count [PLT], hemoglobin [Hb], aspartate aminotransferase [AST], alanine aminotransferase [ALT], lactate dehydrogenase [LDH], creatine phosphokinase [CK], myoglobin [Mb], blood–urea–nitrogen [BUN], plasma creatinine [Cr], C-reactive protein [CRP], prothrombin time [PT], activated partial thromboplastin time [aPTT] and international normalized ratio [INR]) of all patients were recorded onto forms on admission. A control group made up healthy blood donors was also established. Blood samples were obtained on admission from the patient and control groups from the antecubital vein in tubes containing K3EDTA and serum separator. Plasma and serum supernatants were obtained after the centrifugation of blood samples at 3000 rpm for 10 min. The remaining serum and plasma samples were kept at −80 °C until suPAR analysis. Levels of plasma suPAR were determined using an enzyme-linked immunosorbent assay (ELISA) kit (ViroGates A/S, Denmark, Product No. 203EK1-1) according to the manufacturer’s instructions. The absorbance of samples was measured at 450 nm using a VERSA max tunable microplate reader (designed by Molecular Devices, California, USA).

3.1. Statistical analysis

Descriptive statistical analysis was performed for all the studied variables. The data obtained in measurements of normal distribution were analyzed using the Kolmogorov–Smirnov test. Data in conformity with normal distribution were analyzed using Student’s t-test, and those not conforming to normal distribution using the Mann–Whitney-U test. Data obtained by counting are given as mean ± standard deviation. Data obtained by counting are given as numbers (%); analyses were performed using the chi-square test. The area beneath the receiver operating characteristics (ROC) curve was used to calculate the discriminative ability of the suPAR to determine patients with CCHF. Sensitivity, specificity, negative predictive values (NPV) and positive predictive values (PPV) were calculated according to ROC curves for suPAR. p < 0.05 was regarded as significant.

4. Results

A hundred consecutive patients with CCHF, 55 females and 45 males, with a mean age of 48.8 ± 16.1, were included in the study. The control group consisted of 53 individuals (25 females and 28 males), with a mean age of 34.1 ± 8.6. The patients were from various towns in the southern parts of the Black Sea region of Turkey. Eighty-six patients worked in farming or animal husbandry. A history of tick bite was established in 66 patients. Exhaustion (84%), fever (82%), headache (74%), nausea (72%), myalgia (69%), vomiting (34%), bleeding (29%), hepatomegaly (12%) and splenomegaly (8%) were observed in patients. No patients were given ribavirin. The control group consisted of 53 individuals (25 females and 28 males, with a mean age of 48.8 ± 16.1. In terms of age, gender, occupation, and history of tick bite, the groups were comparable (Table 1).

Table 1 Correlation analysis between suPAR and other laboratory markers.

<table>
<thead>
<tr>
<th>Biochemical markers</th>
<th>Mean ± SD</th>
<th>Correlation analysis (suPAR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>suPAR (ng/mL)</td>
<td>6.2 ± 4.2</td>
<td>r = 1</td>
</tr>
<tr>
<td>WBC (µL⁻¹)</td>
<td>2700 ± 2100</td>
<td>r = 0.547; p = 0.000</td>
</tr>
<tr>
<td>Hb (g/dL)</td>
<td>13.8 ± 1.4</td>
<td>r = −0.094; p = 0.352</td>
</tr>
<tr>
<td>PLT (µL⁻¹)</td>
<td>93000 ± 45000</td>
<td>r = −0.314; p = 0.001</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>270 ± 570</td>
<td>r = 0.313; p = 0.002</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>133 ± 170</td>
<td>r = 0.391; p = 0.000</td>
</tr>
<tr>
<td>LDH (U/L)</td>
<td>700 ± 800</td>
<td>r = 0.580; p = 0.000</td>
</tr>
<tr>
<td>CK (U/L)</td>
<td>680 ± 890</td>
<td>r = 0.0895; p = 0.376</td>
</tr>
<tr>
<td>Mb (g/dL)</td>
<td>130 ± 193</td>
<td>r = 0.654; p = 0.000</td>
</tr>
<tr>
<td>BUN (mg/dL)</td>
<td>19.5 ± 15.5</td>
<td>r = 0.303; p = 0.002</td>
</tr>
<tr>
<td>Cr (mg/dL)</td>
<td>0.9 ± 0.7</td>
<td>r = 0.206; p = 0.040</td>
</tr>
<tr>
<td>CRP (mg/dL)</td>
<td>0.519; p = 0.000</td>
<td></td>
</tr>
<tr>
<td>PT (s)</td>
<td>13.6 ± 2.1</td>
<td>r = 0.471; p = 0.000</td>
</tr>
<tr>
<td>aPTT (s)</td>
<td>32.9 ± 6.0</td>
<td>r = 0.327; p = 0.001</td>
</tr>
<tr>
<td>INR</td>
<td>1.1 ± 0.4</td>
<td>r = 0.653; p = 0.000</td>
</tr>
</tbody>
</table>

Values (Table 1). When the suPAR results were analyzed using the ROC curve method, the optimum diagnostic cut-off point was 3.06 ng/mL, the area underneath the ROC curve (AUROC) was 0.94 (95% CI: 0.89–0.97), sensitivity 87% (95% CI: 79–93%), specificity 92% (95% CI: 82–98%), PPV 95% and NPV 79% (Fig. 1). Five of the patients died. A suPAR value of 18.4 ± 9.1 was determined in the patients that died and of 5.6 ± 2.6 in the survivors (p = 0.034) (Fig. 2). In terms of mortality, when the suPAR results were analyzed using the ROC curve method, the optimum diagnostic cut-off point was 10.6 ng/mL, AUROC 0.97 (95% CI: 0.94–0.99), sensitivity 100% (95% CI: 48–100%), specificity 96% (95% CI: 90–99%), PPV 50% and NPV 100%.

5. Discussion

suPAR is a new biomarker, and there have so far been few studies on the subject. Studies have reported that plasma suPAR levels rise in patients with bacterial and viral infection, stating that suPAR emission increases during acute inflammation. suPAR increase in conditions that involve immune activation, and studies have shown that high concentrations of suPAR portend a poor clinical outcome in such diverse infections as tuberculosis, malaria, HIV infection and pneumococcal bacteremia. suPAR levels have also been reported to rise in patients with urosepsis and bacterial meningitis. In our study, suPAR was significantly higher in patients with infection compared to those

Fig. 1. Receiving operating characteristics of suPAR.
with our study, other research has also shown elevated suPAR levels to be of prognostic value for patients with tuberculosis, UTI, HIV infection, bacterial meningitis and streptococcal bacteremia. Although the prognostic value of elevated suPAR was established in our study, this result was studied in only five patients. Large-scale studies determining more accurate prognostic criteria are therefore required.

In conclusion, the measurement of plasma suPAR levels, a new biomarker, is a test that can be used in the differential diagnosis and monitoring of CCHF in patients admitted to hospital with suspected infection. The test is at the same time important in being a possible predictor of mortality.

Conflicts of interest

None of the authors had any financial or personal relationships with other individuals or organizations that might inappropriately influence their work during the submission process.

Ethical approval

The study had been approved by judgement with 2005–33 reference number of Local Ethical Committee.

References